Some More Geometric Data
Structures (Winowing cont.)

Windowing (reminder)

* We have seen how to find axis-aligned lines intersecting an axis-aligned
window.

Interval trees (reminder)

e \We have used interval trees:

* In the relevant nodes we searched for the end points contained in a rectangle
unbounded from one side.

* For this we have used 2d-Range Trees and then improved to Priority Search Trees.

Non Axis-Aligned segments

 What about general segments, that is, not axis-aligned?
* We will restrict the problem to non-intersecting segments.

* Can we use the solution we already have? N
 Use segment bounding box instead! z
* Works quite well in practice.

e Worst case is bad:

V/
7/

V.

7
/0
—]

Non Axis-Aligned segments

* Can we adopt interval trees? /
* The key point in interval trees is knowing

that one side of the segment is to the right '\ o .\\,
(or left) of g.
* This doesn’t help much if we allow

arbitrary orientation.

X'mid

Non Axis-Aligned segments

* Can we adopt interval trees? /
* The key point in interval trees is knowing

that one side of the segment is to the right '\ o .\\,
(or left) of g.
* This doesn’t help much if we allow

arbitrary orientation.

X'mid

Segment trees

e Let’'s remember what interval trees solves in the first place:
* Finding the 1d-segments that cover a given point x.
* Can we devise another data structure for that?

* If the segments doesn’t overlap we can store them in a BST, and looking
for the one segment that intersects x is easy.

e But what if they do overlap?

Segment trees

* Given a set S of overlapping segments, we want to find which segments
Intersects a point x.

* Create a new set, of non overlapping segments and store it in a BST.
* Add zero-size segments for the end points.

* In each leaf store a list of (original) segments that intersects it.

'\51 —> 54 [P S7 P S
®

.M

Segment trees |

* What is the space complexity of this EEREREEE

data structure?]

* Each segment can appear in many leaves.
* The space complexity is O(n?).
 Can we improve it?

* If a segment appear in consecutive leaves,
we can store it in the parent node instead.

s Will be stored in v Hi

Ha

and u_5.

Segment trees

* The complete data structure:

O
O (2
5§27, 55 55
(O ()
S| () 53 ()
S
() () () () O OEEN O N
AN
| L | OO0 O OO0 JOOr] o] s
52,585 83 54
|| || | | || || | | ||
III I III [III [III
' s 1 52 rs3 1
| i | y 4
I 1

Segment trees

 What is the space complexity now?

* Each segment can appear at most twice at any level of the tree.
* Assume to the contrary:)

* All the leaves between v; and v5 contain a segment s.

* Then, all the leaves in the subtree of parent(v,)
also contain s, thus s will appear in parent(v,)
and not in v,.

* Conclusion: each segment is stored in O(logn))y, v va
nhodes.

* The space complexity is O(nlogn).

parent(vy)

Segment trees

* Building a segment tree can also be done in O(nlogn).
* How do we find all the segments covering x?

e Search for x in the tree, report all the segment stored in nodes along
the search path.

* Complexity: O(logn + k) where k is the number of reported
segments.

* Notice that a segment tree does the same job as a plain interval tree,
but with worse space complexity.

Segment trees

* So how does segment trees help us?

* Given a set of non-intersecting segments, build a segment tree to
their projection on the x-axis.

* Using that we can find potential segments. Segments that cover the x
coordinate of the window edge.

* How does this help?

Segment trees

* Each internal node represents
the union of segments of its
sons.

* A segment will be stored in a node

(- 56
if it covers the whole node-segment. ‘.
* This means that the set of offf’/f//
segments stored in the node is 1

well ordered. 3 '\"7'
~—q /.

Segment trees

* The set of segments in each node is well o
* Intuition: it looks like a (bended) ladder.

* How can we this to find which segments ir
window edge?

 Store the segments in a BST!

Segment trees

* The set of segments in each node is well o
* Intuition: it looks like a (bended) ladder.

* How can we this to find which segments ir
window edge?

 Store the segments in a BST!

Segment trees

* The space complexity is not affected: O(nlogn)

* The search in each node is done in O(logn), thus, the query
complexity is 0 (log® n + k)

* Building the tree takes O(nlog? n).
* |t can be improved to O(nlogn) using some trick.

